在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=( )
A. B.
C.
D.
在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=( )
A. B.
C.
D.
A.
考点: 正弦定理;两角和与差的正弦函数.
专题: 解三角形.
分析: 利用正弦定理化简已知的等式,根据sinB不为0,两边除以sinB,再利用两角和与差的正弦函数公式化简求出sinB的值,即可确定出B的度数.
解答: 解:利用正弦定理化简已知等式得:sinAsinBcosC+sinCsinBcosA=sinB,
∵sinB≠0,∴sinAcosC+sinCcosA=sin(A+C)=sinB=,
∵a>b,∴∠A>∠B,即∠B为锐角,
则∠B=.
故选A
点评: 此题考查了正弦定理,两角和与差的正弦函数公式,以及诱导公式,熟练掌握正弦定理是解本题的关键.