)已知数列{an}为等差数列,Sn为其前n项和,a1+a5=6,S9=63.
(1)求数列{an}的
通项公式an及前n项和Sn;
(2)数列{bn}满足:对
n∈N+,bn=2an,求数列{an·bn}的前n项和Tn.
)已知数列{an}为等差数列,Sn为其前n项和,a1+a5=6,S9=63.
(1)求数列{an}的
通项公式an及前n项和Sn;
(2)数列{bn}满足:对
n∈N+,bn=2an,求数列{an·bn}的前n项和Tn.
(1)S9=63⇒9a5=63⇒a5=7.
a1+a5=6⇒a1=-1⇒d=
=2
⇒an=2n-3,Sn=n2-2n.
(2)bn=22n-3⇒an·bn=(2n-3)·22n-3
T
n=-1·2-1+1·21+3·23+5·25+…+(2n-3)·22n-3,
4Tn=-1·21+1·23+3·25+…
+(2n-5)·22n-3+(2n-3)·22n-1,
两式相减得:-3Tn=-
+2(2+23+25+…+22n-3)-(2n-3)·22n-1
=-
+2×
-(2n-3)·22n-1=![]()
∴Tn=
.