如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.
如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.
证明:连接BD
∵等边△ABC中,D是AC的中点
∴∠DBC=∠ABC=
×60°=30°
∠ACB=60°
又∵CE=CD
∴∠E=∠CDE
又∵∠ACB=∠E+∠CDE
∴∠E=∠ACB=30°
∴∠DBC=∠E==30°
∴DB=DE
又∵DM⊥BC
∴M是BE的中点。