如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是 (写出所有正确结论的序号)
①当E为线段AB中点时,AF∥CE;
②当E为线段AB中点时,AF=;
③当A、F、C三点共线时,AE=;
④当A、F、C三点共线时,△CEF≌△AEF.
如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是 (写出所有正确结论的序号)
①当E为线段AB中点时,AF∥CE;
②当E为线段AB中点时,AF=;
③当A、F、C三点共线时,AE=;
④当A、F、C三点共线时,△CEF≌△AEF.
①②③
【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.菁优网版权所有
【分析】分两种情形分别求解即可解决问题;
【解答】解:如图1中,当AE=EB时,
∵AE=EB=EF,
∴∠EAF=∠EFA,
∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,
∴∠BEC=∠EAF,
∴AF∥EC,故①正确,
作EM⊥AF,则AM=FM,
在Rt△ECB中,EC==
,
∵∠AME=∠B=90°,∠EAM=∠CEB,
∴△CEB∽△EAM,
∴=
,
∴=
,
∴AM=,
∴AF=2AM=,故②正确,
如图2中,当A、F、C共线时,设AE=x.
则EB=EF=3﹣x,AF=﹣2,
在Rt△AEF中,∵AE2=AF2+EF2,
∴x2=(﹣2)2+(3﹣x)2,
∴x=,
∴AE=,故③正确,
如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,
故答案为①②③.
【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.