某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.
车间 | A | B | C |
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.
某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.
车间 | A | B | C |
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.
【考点】古典概型及其概率计算公式.
【专题】概率与统计.
【分析】(1)求出样本容量与总体中的个体数的比,然后求解A、B、C各车间产品的数量.
(2)设6件来自A、B、C三个车间的样品分别为:A;B1,B2,B3;C1,C2.写出从6件样品中抽取的这2件产品构成的所有基本事件.记事件D:“抽取的这2件产品来自相同车间”,写出事件D包含的基本事件,然后求解这2件产品来自相同车间的概率.
【解答】(本小题满分12分)
解:(1)因为样本容量与总体中的个体数的比是,(2分)
所以A车间产品被选取的件数为,(3分)
B车间产品被选取的件数为,(4分)
C车间产品被选取的件数为.(5分)
(2)设6件来自A、B、C三个车间的样品分别为:A;B1,B2,B3;C1,C2.
则从6件样品中抽取的这2件产品构成的所有基本事件为:(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2),共15个.(8分)
每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件产品来自相同车间”,则事件D包含的基本事件有:(B1,B2),(B1,B3),(B2,B3),(C1,C2),共4个.(10分)
所以,即这2件产品来自相同车间的概率为
.(12分)
【点评】本题考查古典概型概率的应用,等可能事件的概率的求法,基本知识的考查.