
(1)求BC1与平面ACC1A1所成的角;
(2)求A1B1与平面A1C1B所成的角.

(1)求BC1与平面ACC1A1所成的角;
(2)求A1B1与平面A1C1B所成的角.
解析:(1)设所求角为α,先证BD⊥平面ACC1A1,则sinα=sin∠OC1B=![]()
(2)△A1B1C1是正三角形,且A1B1=B1C1=BB1.
∴棱锥B1—A1BC1是正三棱锥.过B1作B1H⊥平面A1BC1,连结A1H,∠B1A1H是A1B1与平面A1C1B所成的角.
设A1B1=a,则A1B= ![]()
故cos∠B1A1H=![]()
另法:连结B1C交BC1于E,连结A1E,过B1作B1H⊥A1E于H,得B1E⊥BC1,BC1⊥A1B1,∴BC1⊥平面A1B1E.∴BC1⊥B1H.∴B1H⊥平面ABC1.
∴θ=∠B1A1H为所求角.
∴在△B1A1E中,tanθ=![]()