(1)求数列{an}的通项公式;
(2)令bn=an·3n,求数列{bn}的前n项和公式.
(1)求数列{an}的通项公式;
(2)令bn=an·3n,求数列{bn}的前n项和公式.
解:(1)设数列{an}的公差为d,则a1+a2+a3=3a1+3d=12.
又a1=2,得d=2.
所以an=2n.
(2)由bn=an·3n=2n·3n,得
Sn=2·3+4·32+…+(2n-2)·3n-1+2n·3n, ①
3Sn=2·32+4·33+…+(2n-2)·3n+2n·3n+1. ②
①-②得
-2Sn=2(3+32+33+…+3n)-2n·3n+1=3(3n-1)-2n·3n+1.
所以Sn=+n·3n+1.