求证:两条平行直线被第三条直线所截,内错角的平分线互相平行。
求证:两条平行直线被第三条直线所截,内错角的平分线互相平行。
已知:AB∥CD,EG、FR分别是∠BEF、∠EFC的平分线。
求证:EG∥FR。
证明:∵AB∥CD(已知)
∴∠BEF=∠EFC(两直线平行,内错角相等)
∵EG、FR分别是∠BEF、∠EFC的平分线(已知)
∴2∠1=∠BEF,2∠2=∠EFC(角平分线定义)
∴2∠1=2∠2(等量代换)
∴∠1=∠2(等式性质)
∴EG∥FR(内错角相等,两直线平行)