如图,⊙O1与⊙O2外切与点D,直线l与两圆分别相切于点A、B,与直线
O1、O2相交于点M,且tan∠AM01=,MD=4
.
(1)求⊙O2的半径;
(2)求△ADB内切圆的面积;
(3)在直线l上是否存在点P,使△MO2P相似于△MDB?若存在,求出PO2的长;若不存在,请说明理由.
如图,⊙O1与⊙O2外切与点D,直线l与两圆分别相切于点A、B,与直线
O1、O2相交于点M,且tan∠AM01=,MD=4
.
(1)求⊙O2的半径;
(2)求△ADB内切圆的面积;
(3)在直线l上是否存在点P,使△MO2P相似于△MDB?若存在,求出PO2的长;若不存在,请说明理由.
解:(1)连结O1A、O2B,如图,设⊙O1的半径为r,⊙O2的半径为R,
∵⊙O1与⊙O2外切与点D,
∴直线O1O2过点D,
∴MO2=MD+O2D=4+R,
∵直线l与两圆分别相切于点A、B,
∴O1A⊥AB,O2B⊥AB,
∵tan∠AM01=,
∴∠AM01=30°,
在Rt△MBO2中,MO2=O2B=2R,
∴4+R=2R,解得R=4
,
即⊙O2的半径为4;
(2)∵∠AM02=30°,
∴∠MO2B=60°,
而O2B=O2D,
∴△O2BD为等边三角形,
∴BD=O2B=4,∠DBO2=60°,
∴∠ABD=30°,
∵∠AM01=30°,
∴∠MO1A=60°,
而O1A=O1D,
∴∠O1AD=∠O1DA,
∴∠O1AD=∠MO1A=30°,
∴∠DAB=60°,
∴∠ADB=180°﹣30°﹣60°=90°,
在Rt△ABD中,AD=BD=4,AB=2AD=8,
∴△ADB内切圆的半径==
=2
﹣2,
∴△ADB内切圆的面积=π•(2﹣2)2=(16﹣8
)π;
(3)存在.
在Rt△MBO2中,MB=O2B=
×4
=12,
当△MO2P∽△MDB时,=
,即
=
,解得O2P=8
;
当△MO2P∽△MBD时,=
,即
=
,解得O2P=8,
综上所述,满足条件的O2P的长为8或8.