设α,β∈(0,π),且sin(α+β)=,tan
=
,则cos β= .
设α,β∈(0,π),且sin(α+β)=,tan
=
,则cos β= .
.- 【解析】因为tan
=
,所以tan α=
=
=
,而α∈(0,π),所以α∈
.由tan α=
=
及sin2α+cos2α=1得sin α=
,cos α=
;又sin(α+β)=
<
,所以α+β∈
,cos(α+β)=-
.
所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-×
+
×
=-
.