(本小题满分12分)自点(-3,3)发出的光线L射到x轴上,被x轴反射,其反射线所在直线与圆相切,求光线L所在直线方程.
(本小题满分12分)自点(-3,3)发出的光线L射到x轴上,被x轴反射,其反射线所在直线与圆相切,求光线L所在直线方程.
解:已知圆的标准方程是
它关于x轴的对称圆的方程是
设光线L所在直线方程是:
由题设知对称圆的圆心C′(2,-2)到这条直线的距离等于1,即.
整理得 解得
.
故所求的直线方程是,或
,
即3x+4y-3=0,或4x+3y+3=0.