证明:(1)当n=1时,左=1=1·(++)=右,等式成立.
(2)假设n=k时等式成立即:13+23+33+…+k3=k2(++),则n=k+1时,
13+23+33+…+(k+1)3
=k2(++)+(k+1)3
=k2+(k+1)3
=(k+1)2(+k+1)
=(k+1)2[++].
∴当n=k+1时,等式成立.
由(1)(2)知原等式对任意正整数都成立.