(1)a2+b2=c2;
(2)cos2A+cos2B=1;
(3)Rt△ABC的外接圆半径为r=.
把上面的结论类比到空间写出相类似的结论;如果你能证明,写出证明过程;如果在直角三角形中你还发现了异于上面的结论,试试看能否类比到空间?
(1)a2+b2=c2;
(2)cos2A+cos2B=1;
(3)Rt△ABC的外接圆半径为r=.
把上面的结论类比到空间写出相类似的结论;如果你能证明,写出证明过程;如果在直角三角形中你还发现了异于上面的结论,试试看能否类比到空间?
思路解析:考虑到平面中的图形是直角三角形,所以应在空间中选取有三个面两两垂直的四面体来类比,利用直角三角形的有关性质,通过观察四面体的结构,比较二者的内在联系,从中类比出四面体的相似命题提出猜想.
解:选取3个面两两垂直的四面体作为直角三角形的类比对象.
(1)设3个两两垂直的侧面的面积分别为S1、S2、S3,底面面积为S,则S12+S22+S32=S2.
(2)设3个两两垂直的侧面与底面所成的角分别为α、β、γ,则cos2α+cos2β+cos2γ=1.
(3)设3个两两垂直的侧面形成的侧棱长分别为a、b、c,则这个四面体的外接球的半径R=.
利用三角形的有关性质,通过观察四面体的结构,比较二者的内在联系,从中类比出四面体的相似命题,提出猜想.