如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连结DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的;
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.
如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连结DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的;
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.
(1)证明:△ADQ≌△ABQ;
(2)以A为原点建立如图所示的直角坐标系,过点Q作QE⊥y轴于点E,QF⊥x轴于点F.
AD×QE=
S正方形ABCD=
∴QE=
∵点Q在正方形对角线AC上 ∴Q点的坐标为
∴过点D(0,4),两点的函数关系式为:y=-2x+4,当y=0时,x=2,即P运动到AB中点时,△ADQ的面积是正方形ABCD面积的
;
(3)若△ADQ是等腰三角形,则有QD=QA或DA=DQ或AQ=AD
①当点P运动到与点B重合时,由四边形ABCD是正方形知 QD=QA此时△ADQ是等腰三角形;
②当点P与点C重合时,点Q与点C也重合,此时DA=DQ,△ADQ是等腰三角形;
③如图,设点P在BC边上运动到CP=x时,有AD=AQ
∵AD∥BC ∴∠ADQ=∠CPQ.
又∵∠AQD=∠CQP,∠ADQ=∠AQD,
∴∠CQP=∠CPQ.
∴CQ=CP=x.
∵AC=,AQ=AD=4.
∴x=CQ=AC-AQ=-4.
即当CP=-4时,△ADQ是等腰三角形.