如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是 .
如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是 .
2 解:设A′B=x,
∵△ABC是等边三角形,
∴∠B=60°,
∵DA′⊥BC,
∴∠BDA′=90°﹣60°=30°,
∴BD=2A′B=2x,
由勾股定理得,A′D==
=
x,
由翻折的性质得,AD=A′D=x,
所以,AB=BD+AD=2x+x=4+2
,
解得x=2,
即A′B=2.