已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,求m为何值时:
(1)圆C1与圆C2外切;
(2)圆C1与圆C2内含.
已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,求m为何值时:
(1)圆C1与圆C2外切;
(2)圆C1与圆C2内含.
将两圆方程化为标准方程,
得圆C1:(x-m)2+(y+2)2=9,
圆C2:(x+1)2+(y-m)2=4.
(1)因为圆C1与圆C2外切,
则有=3+2,
所以m2+3m-10=0,解得m=2或-5.
所以当m=-5或m=2时,圆C1与圆C2外切.
(2)因为圆C1与圆C2内含,
则有<3-2,
所以m2+3m+2<0,解得-2<m<-1.
所以当-2<m<-1时,圆C1与圆C2内含.