


(1)求证PA⊥底面ABCD;
(2)求四棱锥P—ABCD的体积;
(3)对于向量a=(x1,y1,z1),b=(x2,y2,z2),c=(x3,y3,z3),定义一种运算:
(a×b)·c=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1.
试计算(×
)·
的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算(
×
)·
的绝对值的几何意义.
(1)求证PA⊥底面ABCD;
(2)求四棱锥P—ABCD的体积;
(3)对于向量a=(x1,y1,z1),b=(x2,y2,z2),c=(x3,y3,z3),定义一种运算:
(a×b)·c=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1.
试计算(×
)·
的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算(
×
)·
的绝对值的几何意义.
解析:(1)∵
∴AP⊥AB.
又∵
∴AP⊥AD,∵AB、AD是底面ABCD上的两条相交直线,∴AP⊥底面ABCD.
(2)设
cosθ=
=
V=
(3)|(
猜测:|(