如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD于点F.
(1)求证:△ADE≌△BCE;
(2)求∠AFB的度数.
如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD于点F.
(1)求证:△ADE≌△BCE;
(2)求∠AFB的度数.
(1)证明:∵ABCD是正方形,
∴AD=BC,∠ADC=∠BCD=90°,
又∵三角形CDE是等边三角形,
∴CE=CD,∠EDC=∠ECD=60°,
∴∠ADE=∠ECB,
∴△ADE≌△BCE;
(2)解:∵△CDE是等边三角形,
∴CE=CD=BC,
∴△CBE为等腰三角形,
且顶角∠ECB=90°﹣60°=30°,
∴∠EBC=(180°﹣30°)=75°,
∵AD∥BC,
∴∠AFB=∠EBC=75 °.