.在菱形ABCD中,∠BAD=,E为对角线AC上的一点(不与A,C重合),将射线EB绕点E顺时针旋转
角之后,所得射线与直线AD交于F点.试探究线段EB与EF的数量关系.
小宇发现点E的位置,和
的大小都不确定,于是他从特殊情况开始进行探究.
(1)如图1,当=
=90°时,菱形ABCD是正方形.小宇发现,在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分线的性质可知EM=EN,进而可得
,并由全等三角形的性质得到EB与EF的数量关系为 .
(2)如图2,当=60°,
=120°时,
①依题意补全图形;
②请帮小宇继续探究(1)的结论是否成立.若成立,请给出证明;若不成立,
请举出反例说明;
(3) 小宇在利用特殊图形得到了一些结论之后,在此基础上对一般的图形进行了探究,设∠ABE=,若旋转后所得的线段EF与EB的数量关系满足(1)中的结论,请直接写出角
,
,
满足的关系: .