已知f0(x)=xn,fk(x)=(1),其中k≤n(n,k∈N*),设F(x)=f0(x2

已知f0(x)=xn,fk(x)=(1),其中k≤n(n,k∈N*),设F(x)=f0(x2)+f1(x2)+…+fk(x2)+…+fn(x2),x∈[-1,1].

(1)写出fk(1);

(2)证明:对任意的x1,x2∈[-1,1],恒有|F(x1)-F(x2)|≤2n-1(n+2)-n-1.

答案

(1)解:由已知推得fk(x)=(n-k+1)·xn-k,从而有fk(1)=n-k+1.

(2)证明:证法1:当-1≤x≤1时,

F(x)=x2n+n

x2n-1+(n-1)·x2n-2+…+(n-k+1)x2n-k+…+2nx2+1,

当x>0时,F′(x)>0,所以F(x)在[0,1]上为增函数.

因函数F(x)为偶函数,所以F(x)在[-1,0]上为减函数.

所以对任意的x1,x2∈[-1,1],|F(x1)-F(x2)|≤F(1)-F(0).

F(1)-F(0)==

+n+(n-1)+…+(n-k+1)+…+2

=n

n+(n-1)+…+(n-k+1)·+…+2+=.

∵(n-k+1)

=(n-k)n+n=n+n(k=1,2,3…n-1),

F(1)-F(0)=n(

++…+)+(+…+n)+

=n(2n-1-1)+2n-1=2n-1(n+2)-n-1.

因此结论成立.

证法2:当-1≤x≤1时,

F(x)=x2n+n

x2n-1+(n-1)·x2n-2+…+(n-k+1) x2n-2+…+2nx2+1,

当x>0时,F′(x)>0,所以F(x)在[0,1]上为增函数.

因函数F(x)为偶函数,所以F(x)在[-1,0]上为减函数.

所以对任意的x1,x2∈[-1,1],|F(x1)-F(x2)|<F(1)-F(0).

F(1)-F(0)=

+n+(n-1)+…+(n-k+1)+…+2.

又因F(1)-F(0)=2

+3+…+k+…+nn+

所以2[F(1)-F(0)]=(n+2)[

++…++…+]+2.

F(1)-F(0)=+

++…++…+]+=

(2n-2)+1=2n-1(n+2)-n-1.

因此结论成立.

证法3:当-1≤x≤1时,

F(x)=x2n+n

x 2n-1+(n-1)nx2n-2+…+(n-k+1)·x2n-k+…+2nx2+1,

当x>0时,F′(x)>0,所以F(x)在[0,1]上为增函数.

因函数F(x)为偶函数,所以F(x)在[-1,0]上为减函数.

所以对任意的x1,x2∈[-1,1],|F(x1)-F(x2)|≤F(1)-F(0).

F(1)-F(0)=

+n+(n-1)+…+(n-k+1)+…+2

x[(1+x)n-xn]=x[

xn-1+xn-2+…+xn-k+…+x+1]

=

xn+xn-1+…+xn-k+1+…+x2+x,

对上式两边求导得

(1+x)n-xn+nx(1+x)n-1-nxn=n

xn-1+(n-1)xn-2+…(n-k+1)·xn-k+…+2x+1.

F(x)=(1+x2n+nx2(1+x2n-1-nx 2n,∴F(1)-F(0)=2n+n2n-1-n-1=(n+2)2n-1-n-1.

因此结论成立.


相关题目

—Our school is beautiful!      —It will be more beautiful if more trees
—Our school is beautiful!      —It will be more beautiful if more trees and grass _____ by us.       A.plant       B.plants      C.is planted    D.are planted
 The teacher was very pleased_______ Tony’s answer. A. with        
 The teacher was very pleased_______ Tony’s answer. A. with                     B. on                            C. in              
下图所示是突触结构模式图。请根据图回答:([    ]内
下图所示是突触结构模式图。请根据图回答:([    ]内写标号) (1)⑦中所包含的化学递质只能由[  ]_________翻译,作用于[  ]_________,使
依次填入下列各句横线处的词语,最恰当的一组是(    ) ①
依次填入下列各句横线处的词语,最恰当的一组是(    ) ①其实,中药产业一直以来都是我国的传统的优势产业,可是由于技术瓶颈的       ,我国
 —I saw a very good shirt in that shop. Will you go and buy ___ ? — I’d
 —I saw a very good shirt in that shop. Will you go and buy ___ ? — I’d rather you bought one in ___ shops. A. one;other       B. it; others    C. one; another    D. it; the ot
阅读下面的文字,根据要求作文。2008年浙江省高考文科状元
阅读下面的文字,根据要求作文。2008年浙江省高考文科状元申屠李融在谈及自己何以取得优异成绩时,向大家推荐了一个经典的学习方法――纠错法,
若分式有意义,则x的取值范围是( ) A.x≠1         
若分式有意义,则x的取值范围是( ) A.x≠1                  B.x≠﹣1                C.x=1                    D.x=﹣1