)在平面直角坐标系中,抛物线经过O(0,0)、
A(4,0)、B(3,)三点.
(1)求此抛物线的解析式;
(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)
)在平面直角坐标系中,抛物线经过O(0,0)、
A(4,0)、B(3,)三点.
(1)求此抛物线的解析式;
(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)
解:(1)设抛物线的解析式为:
由题意得: ……………1分
解得: ………………2分
∴抛物线的解析式为: ………………1分
![]() |
(2)存在
(2)抛物线的顶点坐标是
,作抛物线和⊙M(如图),
设满足条件的切线 l 与 x 轴交于点B,与⊙M相切于点C
连接MC,过C作CD⊥ x 轴于D
∵ MC = OM = 2, ∠CBM = 30°, CM⊥BC
∴∠BCM = 90° ,∠BMC = 60° ,BM = 2CM = 4 , ∴B (-2, 0)
在Rt△CDM中,∠DCM = ∠CDM - ∠CMD = 30°
∴DM = 1, CD = =
∴ C (1,
)
设切线 l 的解析式为:,点B、C在 l 上,可得:
解得:
∴切线BC的解析式为:
∵点P为抛物线与切线的交点
由 解得:
∴点P的坐标为:,
………………4分
∵ 抛物线的对称轴是直线
此抛物线、⊙M都与直线成轴对称图形
于是作切线 l 关于直线的对称直线 l′(如图)
得到B、C关于直线的对称点B1、C1
l′满足题中要求,由对称性,得到P1、P2关于直线的对称点:
,
即为所求的点. ………………4分