(1)证明对n≥2总有xn≥;
(2)证明对n≥2总有xn≥xn+1.
证明:
于是xk+1=(xk+)在[,+∞)上递增,故xk+1≥f()=.
(2)有xn-xn+1=(xn-),
构造函数f(x)=(x-),它在[a,+∞)上是增函数,故有xn-xn+1=(xn-)≥f(a)=0,得证.