.(8分)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.

1.(1)连接GD,求证:△ADG≌△ABE;
2.(2)连接FC,观察并猜测∠FCN的度数代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明,并说明理由;
【小题】(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
1.解:(1)∵四边形ABCD和四边形AEFG是正方形
∴AB=AD,AE=AG,∠BAD=∠EAG=90º
∴∠BAE+∠EAD=∠DAG+∠EAD
∴∠BAE=∠DAG
∴△ BAE≌△DAG
2.(2)∠FCN=45º
理由是:作FH⊥MN于H
∵∠AEF=∠ABE=90º
∴∠BAE +∠AEB=90º,∠FEH+∠AEB=90º
∴∠FEH=∠BAE
又∵AE=EF,∠EHF=∠EBA=90º
∴△EFH≌△ABE
∴FH=BE,EH=AB=BC,∴CH=BE=FH
∵∠FHC=90º,∴∠FCH=45º
3.(3)当点E由B向C运动时,∠FCN的大小总保持不变,
理由是:作FH⊥MN于H
由已知可得∠EAG=∠BAD=∠AEF=90º
结合(1)(2)得∠FEH=∠BAE=∠DAG
又∵G在射线CD上
∠GDA=∠EHF=∠EBA=90º
∴△EFH≌△GAD,△EFH∽△ABE
∴EH=AD=BC=b,∴CH=BE,
∴==
∴在Rt△FEH中,tan∠FCN===
解析:略