已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为( )
A.
B.1 C.
D.![]()
已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为( )
A.
B.1 C.
D.![]()
C【考点】抛物线的简单性质.
【专题】圆锥曲线的定义、性质与方程.
【分析】根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到y轴的距离.
【解答】解:∵F是抛物线y2=x的焦点,
F(
)准线方程x=
,
设A(x1,y1),B(x2,y2),
根据抛物线的定义抛物线上的点到焦点的距离等于到准线的距离|AF|=
,|BF|=
,
∴|AF|+|BF|=
=3
解得
,
∴线段AB的中点横坐标为
,
∴线段AB的中点到y轴的距离为
.
故选C.
【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.