(1)证明f-1(x1)f-1(x2)=f-1(x1+x2);
(2)解不等式f-1(x2+x)f-1(x+2)≤![]()
(1)证明f-1(x1)f-1(x2)=f-1(x1+x2);
(2)解不等式f-1(x2+x)f-1(x+2)≤![]()
(1)证明:任取x1、x2∈[0,2],且设y1=f-1(x1),y2=f-1(x2)![]()
f(y2),
则x1+x2=f(y1)+f(y2)=f(y1y2)![]()
又y1y2=f-1(x1)f-1(x2),
所以f-1(x1)f-1(x2)=f-1(x1+x2)成立.
(2)解:f(x)为减函数,则f-1(x)也为减函数.因f(![]()
则f-1(x2+x)f-1(x+2)≤![]()
![]()
![]()
x=0或x=-2.又由已知条件0≤x≤2,得x=0.