为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.
(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);
(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?
为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.
(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);
(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?
【考点】二次函数的应用.
【分析】(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;
(2)将得到的二次函数配方后即可确定最大利润.
【解答】解:(1)S=y(x﹣40)=(x﹣40)(﹣10x+1200)=﹣10x2+1600x﹣48000;
(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000,
则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.
【点评】此题主要考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值).