如图,二次函数y=x2+bx-3b+3的图象与x轴交于A、B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).
(1)求这条抛物线的解析式;
(2)⊙M过A、B、C三点,交y轴于另一点D,求点M的坐标;
(3)连接AM、DM,将∠AMD绕点M顺时针旋转,两边MA、MD与x轴、y轴分别交于点E、F,若△DMF为等腰三角形,求点E的坐标.
![]() |
如图,二次函数y=x2+bx-3b+3的图象与x轴交于A、B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).
(1)求这条抛物线的解析式;
(2)⊙M过A、B、C三点,交y轴于另一点D,求点M的坐标;
(3)连接AM、DM,将∠AMD绕点M顺时针旋转,两边MA、MD与x轴、y轴分别交于点E、F,若△DMF为等腰三角形,求点E的坐标.
![]() |
解析:(1)把点(b-2,2b2-5b-1)代入解析式,得
2b2-5b-1=(b-2)2+b(b-2)-3b+3,
解得b=2.
∴抛物线的解析式为y=x2+2x-3.
(2)由x2+2x-3=0,得x=-3或x=1.
∴A(-3,0)、B(1,0)、C(0,-3).
抛物线的对称轴是直线x=-1,圆心M在直线x=-1上.
∴设M(-1,n),作MG⊥x轴于G,MH⊥y轴于H,
连接MC、MB.
∴MH=1,BG=2.
∵MB=MC,∴BG2+MG2=MH2+CH2,
即4+n2=1+(3+n)2,解得n=-1,∴点M(-1,-1)
(3)如图,由M(-1,-1),得MG=MH.
∵MA=MD,∴Rt△AMG≌RtDMH,∴∠1=∠2.
由旋转可知∠3=∠4. ∴△AME≌△DMF.
若△DMF为等腰三角形,则△AME为等腰三角形.
设E(x,0),△AME为等腰三角形,分三种情况:
①AE=AM=,则x=
-3,∴E(
-3,0);
②∵M在AB的垂直平分线上,
∴MA=ME=MB,∴E(1,0)
③点E在AM的垂直平分线上,则AE=ME.
AE=x+3,ME2=MG2+EG2=1+(-1-x)2,∴(x+3)2=1+(-1-x)2,解得x=,∴E(
,0).∴所求点E的坐标为(
-3,0),(1,0),(
,0)
![]() |