根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为______米.
根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为______米.
5.6 米.
【考点】相似三角形的应用.
【分析】根据镜面反射的性质求出△ABE∽△CDE,再根据其相似比解答.
【解答】解:根据题意,易得∠CDE=∠ABE=90°,∠CED=∠AEB,
则△ABE∽△CDE,
则,即
,
解得:AB=5.6米.
故答案为:5.6.
【点评】应用反射的基本性质,得出三角形相似,运用相似比即可解答.