学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):规定若满意度不低于98分,测评价该教师为“优秀”.
(I)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
(II)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为“优秀”的人数,求
的分布列及数学期望.
学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):规定若满意度不低于98分,测评价该教师为“优秀”.
(I)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
(II)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为“优秀”的人数,求
的分布列及数学期望.
解:(Ⅰ)设表示所取3人中有
个人评价该教师为“优秀”,至多有1人评价该教师为“优秀”记为事件
,则
………6分
(Ⅱ)的可能取值为0、1、2、3 ,
;
;
;
.
分布列为
| | | | |
| | | | |
……………10分
. ………12分
注:用二项分布直接求解也可以.