设函数f(x)=lnx-x2+x.
(I)求f(x)的单调区间;
(II)求f(x)在区间[,e]上的最大值.
设函数f(x)=lnx-x2+x.
(I)求f(x)的单调区间;
(II)求f(x)在区间[,e]上的最大值.
解:(I)因为f(x)=lnx-x2+x其中x>0
所以f '(x)=-2x+1=
所以f(x)的增区间为(0,1),减区间为(1,+∞).
(II)由(I)f(x)在[,1]单调递增,在[1,e]上单调递减,
∴f(x)max=f(1)=0 f(x)max=f(1)=a-1