设数列{an}满足a1+3a2+…+(2n-1)an=2n.
(1)求{an}的通项公式;
(2)求数列{}的前n项和.
设数列{an}满足a1+3a2+…+(2n-1)an=2n.
(1)求{an}的通项公式;
(2)求数列{}的前n项和.
解:(1)数列{an}满足a1+3a2+…+(2n-1)an=2n,
n≥2时,a1+3a2+…+(2n-3)an-1=2(n-1),∴两式相减得(2n-1)an=2,
∴an=,当n=1时,a1=2,上式也成立,∴an=
;
(2)=
=
-
,∴数列{
}的前n项和为
+
+…+
=1-
=
.