∵a2n+1=b2n+1,a1=b1,
∴a1+(2n+1-1)d=b1q2n,
即a1+2nd=b1q2n.
∴a1+2nd=a1q2n.
∴d=
.
∴an+1-bn+1=a1+nd-a1qn
=a1+
-a1qn
=a1
.
(1)若q=1,则d=0,an+1=bn+1=a1.
(2)q=-1,则当n为偶数时,qn-1=0,
所以an+1=bn+1;
当n为奇数时,(qn-1)2>0.
故a1>0时,an+1>bn+1;
a1<0时,an+1<bn+1.
(3)若|q|≠1,则恒有(qn-1)2>0.
故a1>0时,an+1>bn+1;
a1<0时,an+1<bn+1.
温馨提示
本题是考查等差、等比数列知识及不等式的证明的综合题,求解时要对作差式的变形式进行讨论才能使求解过程全面、完整.