

.
.
证明:
[=(x1-x3)2+(y1-y3)2+(x2-x3)2+(y2-y3)2+2·
≥(x1-x3)2+(y1-y3)2+(x2-x3)2+(y2-y3)2+2
=(x1-x3)2+(x2-x3)2+(y1-y3)2+(y2-y3)2+2|(x1-x3)(x2-x3)+(y1-y3)(y2-y3)|
≥(x1-x3)2+(x2-x3)2+(y1-y3)2+(y2-y3)2+2(x1-x3)(x3-x2)+2(y1-y3)(y3-y2)=(x1-x3+x3-x2)2+(y1-y3+y3-y2)2=(x1-x2)2+(y1-y2)2.
∴原不等式成立.
温馨提示
柯西不等式是一个重要不等式,是与高等数学的结合点,要灵活应用.