.在△ABC中,内角A,B,C所对的边分别为a,b,c,且a+b+c=8.
(1)若a=2,b=,求cos C的值;
(2)若sin Acos2+sin Bcos2
=2sin C,且△ABC的面积S=
sin C,求a和b的值.
.在△ABC中,内角A,B,C所对的边分别为a,b,c,且a+b+c=8.
(1)若a=2,b=,求cos C的值;
(2)若sin Acos2+sin Bcos2
=2sin C,且△ABC的面积S=
sin C,求a和b的值.
(1)由题意可知c=8-(a+b)=.由余弦定理得cos C=
=
=-
.
(2)由sin Acos2+sin Bcos2
=2sin C,可得sin A·
+sin B·
=2sin C,化简,得sin A+sin Acos B+sin B+sin Bcos A=4sin C.
因为sin Acos B+cos Asin B=sin(A+B)=sin C,
所以sin A+sin B=3sin C.
由正弦定理可知a+b=3c.
又a+b+c=8,所以a+b=6.
由于S=absin C=
sin C,
所以ab=9,联立解得a=3,b=3.