设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处的导数为0.
(1)求f(x)的解析式; [(2)求f(x)在点A(1,16)处的切线方程.
设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处的导数为0.
(1)求f(x)的解析式; [(2)求f(x)在点A(1,16)处的切线方程.
解:(1)f′(x)=6x2-6(a+1)x+6a.
因为f(x)在x=3处的导数为0,所以f′(3)=6×9-6(a+1)×3+6a=0,
解得a=3,所以f(x)=2x3-12x2+18x+8.
(2)A点在f(x)上,由(1)可知f′(x)=6x2-24x+18,
f′(1)=6-24+18=0,所以切线方程为y=16.