如图11,某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.
(1)直接写出y与x之间的函数关系式;
(2)分别求出第10天和第15天的销售金额;
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
如图11,某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.
(1)直接写出y与x之间的函数关系式;
(2)分别求出第10天和第15天的销售金额;
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
(1)分两种情况:
①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
∵直线y=k1x过点(15,30),
∴15k1=30,解得k1=2,
∴y=2x(0≤x≤15);
②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
∵点(15,30),(20,0)在y=k2x+b的图象上,
∴ ,解得:
,
∴y=-6x+120(15<x≤20);
综上,可知y与x之间的函数关系式为:
y= ;
(2)∵第10天和第15天在第10天和第20天之间,
∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
∵点(10,10),(20,8)在z=mx+n的图象上,
∴,解得
,
∴p=-x+12(10≤x≤20),
当x=10时,p=10,y=2×10=20,销售金额为:10×20=200(元),
当x=15时,p=-×15+12=9,y=30,销售金额为:9×30=270(元).
故第10天和第15天的销售金额分别为200元,270元;
(3)若日销售量不低于24千克,则y≥24.
当0≤x≤15时,y=2x,
解不等式2x≥24,得x≥12;
当15<x≤20时,y=-6x+120,
解不等式-6x+120≥24,得x≤16,
∴12≤x≤16,
∴“最佳销售期”共有:16-12+1=5(天);
∵p=-x+12(10≤x≤20),-
<0,
∴p随x的增大而减小,
∴当12≤x≤16时,x取12时,p有最大值,此时p=-×12+12=9.6(元/千克).
故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元.
y y