某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
[解析] 解法1:设需要预订满足要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z元,则依题意,得z=2.5x+4y,且x,y满足
作出可行域如图,则z在可行域的四个顶点A(9,0),B(4,3),C(2,5),D(0,8)处的值分别是
zA=2.5×9+4×0=22.5,
zB=2.5×4+4×3=22,
zC=2.5×2+4×5=25,
zD=2.5×0+4×8=32.
比较之,zB最小,因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.
解法2:设需要预订满足要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z元,则依题意,得z=2.5x+4y,且x,y满足
作出可行域如图(解法1中的图),让目标函数表示的直线2.5x+4y=z在可行域上平移,由此可知z=2.5x+4y在B(4,3)处取得最小值.
因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.