(1)求证:B1D1∥面C1BD;
(2)求证:面AB1D1∥面C1BD;
(3)求证:A1C⊥面C1BD;
(4)求证:面C1BD⊥面ACC1A1;
(5)求三棱锥B—A1C1D的体积.
(1)求证:B1D1∥面C1BD;
(2)求证:面AB1D1∥面C1BD;
(3)求证:A1C⊥面C1BD;
(4)求证:面C1BD⊥面ACC1A1;
(5)求三棱锥B—A1C1D的体积.
解析:
(1)如图,在正方体ABCD-A1B1C1D1中,AA1BB1,AA1
D1D
BB1
D1D,
∴B1BDD1是平行四边形D1B1∥BD,
又B1D1面C1BD,BD
面C1BD,∴B1D1∥面C1BD.
(2)由(1)得B1D1∥面C1BD,
同理,同AD1∥BC1知AD1∥面C1BD,
而AD1与B1D1是面AB1D1内两条相交直线,
∴面AB1D1∥面C1BD.
(3)如上图,在正方体ABCD-A1B1C1D1中,
∵BD⊥AC,且由AA1⊥面ABCD知∴BD⊥AA1.
∴BD⊥面ACC1A1,又A1C面ACC1A1,∴A1C⊥BD.
同理A1C⊥C1D,∴A1C⊥面C1BD.
(4)由(3)得A1C⊥面C1BD,A1C面ACC1A1,
∴面C1BD⊥面ACC1A.
(5)如上图