【小题1】(1)
【小题2】(2)∵在△
ABC中,∠
C=90°,
AC=
BC=4.
∴∠
A=∠
B=45°,
AB=4,∴∠
ADE+∠
AED=135°;
又∵∠
DEF=45°,∴∠
BEF+∠
AED=135°,∴∠
ADE=∠
BEF;
∴△
ADE∽△
BEF···················································································· 4分
∴=,
∴=,∴
y=-
x2+x························································ 5分
∴y=-
x2+x=-(
x-2)
2+∴当
x=2时,
y有最大值=·································································· 6分
∴点
F运动路程为cm············································································ 7分
【小题3】(3)这里有三种情况:
①如图,若
EF=
BF,则∠
B=∠
BEF;
又∵△
ADE∽△
BEF,∴∠
A=∠
ADE=45°
∴∠
AED=90°,∴
AE=
DE=,
∵动点
E的速度为1cm/s,∴此时
x=s;
②如图,若
EF=
BE,则∠
B=∠
EFB;
又∵△
ADE∽△
BEF,∴∠
A=∠
AED=45°
∴∠
ADE=90°,∴
AE=3,
∵动点
E的速度为1cm/s
∴此时
x=3s;
③如图,若
BF=
BE,则∠
FEB=∠
EFB;
又∵△
ADE∽△
BEF,∴∠
ADE=∠
AED∴
AE=
AD=3,
∵动点
E的速度为1cm/s
∴此时
x=3s;
综上所述,当△
BEF为等腰三角形时,
x的值为s或3s或3s.
(注:求对一个结论得2分,求对两个结论得4分,求对三个结论得5分)解析:
略