(本小题满分13分)
给定椭圆>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”。若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
。
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点。求证:
⊥
.
(本小题满分13分)
给定椭圆>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”。若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
。
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点。求证:
⊥
.
解:(1)因为,所以
…………2分
所以椭圆的方程为, “准圆”的方程为
. …………4分
(2)①当中有一条无斜率时,不妨设
无斜率,
因为与椭圆只有一个公共点,则其方程为
或
,