)如图13,已知Rt△ACB中,∠C=90°,∠BAC=45°.
(1)(4分)用尺规作图,:在CA的延长线上截取AD=AB,并连接
BD(不写作法,保留作图痕迹)
(2)(4分)求∠BDC的度数.
(3)(4分)定义:在直角三角形中,一个锐角A的邻边与对边的比叫
做∠A的余切,记作cotA,即,根据定义,利
用图形求cot22.5°的值.
)如图13,已知Rt△ACB中,∠C=90°,∠BAC=45°.
(1)(4分)用尺规作图,:在CA的延长线上截取AD=AB,并连接
BD(不写作法,保留作图痕迹)
(2)(4分)求∠BDC的度数.
(3)(4分)定义:在直角三角形中,一个锐角A的邻边与对边的比叫
做∠A的余切,记作cotA,即,根据定义,利
用图形求cot22.5°的值.
、解:(1)如图,
(2)∵AD=AB,
∴∠ADB=∠ABD,
而∠BAC=∠ADB+∠ABD,
∴∠ADB=
∠BAC=
×45°=22.5°,
即∠BDC的度数为22.5°;
(3)设AC=x,
∵∠C=90°,∠BAC=45°,
∴△ACB为等腰直角三角形,
∴BC=AC=x,AB=AC=
x,
∴AD=AB=x,
∴CD=x+x=(
+1)x,
在Rt△BCD中,cot∠BDC==
=
+1,
即cot22.5°=+1.