设,
,
,
是平面直角坐标系中两两不同的四点,若
(λ∈R),
(μ∈R),且
,则称
,
调和分割
,
,已知点C(c,o),D(d,O) (c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是
(A)C可能是线段AB的中点
(B)D可能是线段AB的中点
(C)C,D可能同时在线段AB上
(D) C,D不可能同时在线段AB的延长线上
设,
,
,
是平面直角坐标系中两两不同的四点,若
(λ∈R),
(μ∈R),且
,则称
,
调和分割
,
,已知点C(c,o),D(d,O) (c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是
(A)C可能是线段AB的中点
(B)D可能是线段AB的中点
(C)C,D可能同时在线段AB上
(D) C,D不可能同时在线段AB的延长线上
【答案】D
【解析】由 (λ∈R),
(μ∈R)知:四点
,
,
,
在同一条直线上,
因为C,D调和分割点A,B,所以A,B,C,D四点在同一直线上,且, 故选D.