(1)求证:(a-b)⊥c;
(2)若|ka+b+c|>1(k∈R),求k的取值范围.
(1)求证:(a-b)⊥c;
(2)若|ka+b+c|>1(k∈R),求k的取值范围.
(1)证明:∵|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=120°,
∴a·c=|a||c|cos120°=-,
b·c=|b||c|cos120°=-.
∴(a-b)·c=a·c-b·c=(-)-(-
)=0.
∴(a-b)⊥c.
(2)解:由|ka+b+c|>1,得|ka+b+c|2>1,即(ka+b+c)2>1,
∴k2a2+b2+c2+2ka·b+2b·c+2kc·a>1,
即k2-2k>0.∴k<0或k>2.