
(Ⅰ)求a2,a3,a4,a5;
(Ⅱ)设bn=a2n-2,n∈N*,求证:数列{bn}是等比数列,并求其通项公式;
(Ⅲ)在(Ⅱ)条件下,求数列{an}前100项中的所有偶数项的和S.
(Ⅰ)求a2,a3,a4,a5;
(Ⅱ)设bn=a2n-2,n∈N*,求证:数列{bn}是等比数列,并求其通项公式;
(Ⅲ)在(Ⅱ)条件下,求数列{an}前100项中的所有偶数项的和S.
解:(Ⅰ)a2=
(Ⅱ)
=
=
b1=a2-2=
∴数列{bn}是等比数列,且
bn=(
(Ⅲ)由(Ⅱ)得:a2n=bn+2=2-(
S=a2+a4+…+a100=2×50-
=100-1+