如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为( )
(A)140° (B)125° (C)130° (D)110°
如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为( )
(A)140° (B)125° (C)130° (D)110°
因点O为△ABC的外心,则∠BOC、∠A分别是所对的圆心角、圆周角,所以∠O=2∠A,故∠A=
×140°=70°.又因为I为△ABC的内心,所以∠I=90°+
∠A=90°+
×70°=125°.
【答案】B.
【