如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直
如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线 m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=120°.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上
的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试证明FD=FE.

证明:(1)∵BD⊥DE,CE⊥DE,
∴∠BDA=∠CEA=90°,
∵∠
BAC=90°,
∴∠BAD+∠CAE=∠BAD+∠ABD=90°,
∴∠ABD=∠CAE,
在△ABD和△CAE中,
,
∴△ABD≌△CAE(AAS),
∴BD=AE,CE=DA,
∴DE=AE+DA=BD+CE;
(2)DE=BD+CE成立.
理由:∵∠BDA=∠BAC=90°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE
∴DE=AE+AD=BD+CE;
(3)△DEF为等边三角形
理由:∵△ABF和△ACF均为等边三角形
∴BF=AF=AB=AC=CF,∠BAF=∠CAF=∠ABF=60°,
∴∠BDA=∠AEC=∠BAC=120°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中
,
∴△ADB≌△CEA(AAS),
∴BD=AE,∠DBA=∠CAE.
∵∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE.
在△BDF和△AEF中
,
∴△DBF≌△EAF(SAS)
∴DF=EF.