求函数f(x)=2x-的定义域为(0,1](a为实数).(1)当a=-1时,求函数y=f(x)的

求函数f(x)=2x-的定义域为(0,1](a为实数).

(1)当a=-1时,求函数y=f(x)的值域;

(2)若函数y=f(x)在定义域上是减函数,求a的取值范围;

(3)求函数y=f(x)在x∈(0,1]上的最大值及最小值,并求出函数取最值时x的值.

答案

思路解析:判断函数的单调性,往往可用定义法,但有时采用求导的方式更方便.至于求区间上的最值,根据单调性易求.

解:(1)显然函数y=f(x)的值域为[2,+∞).

(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2都有f(x1)>f(x2)成立,即(x1-x2)(2+)>0,只要a <-2x1x2即可,由x1,x2∈(0,1],故-2x1x2∈(-2,0),所以a≤-2,故a的取值范围是(-∞,-2].

(3)当a≥0时,函数y=f(x)在(0,1]上单调增,无最小值,当x=1时取得最大值2-a;

由(2)得当a≤-2时,函数y=f(x)在(0,1)上单调减,无最大值,当x=1时取得最小值2-a;

当-2<a<0时,函数y=f(x)在(0,)上单调减,在,1上单调增,无最大值,当x=时取得最小值2.

评注:用定义研究函数的单调性是研究函数单调性的基本方法,需要注意的是在函数单调性定义中须有f(x1)>f(x2)对于x1,x2∈(0,1]恒成立.对于有参变量的函数要用运动的观点分析参变量对函数的影响,该题目中需要对增减变化的分界线分析,以确定其增减性.分类讨论是数学的基本思想之一,需要同学们很好地去领悟.

2.反函数也是函数,因为它符合函数的定义.反函数的概念只能以变量及对应关系来说明它的含义.中学里讲授的函数内容主要以解析式表示的函数为主,因此,求反函数主要借助初中学习的方程知识来解决,函数与反函数的图象间的关系是观察具体函数的图象给出的结论.

3.对数函数和指数函数是两种基本初等函数,要从函数的定义域、值域、图象、单调性、奇偶性几方面去掌握这两种函数,并从反函数的角度去认识这两种函数.

相关题目

一个电热水壶内装有1kg的冷水,经过加热后水温从18℃升高到
一个电热水壶内装有1kg的冷水,经过加热后水温从18℃升高到98℃,求:电热水壶内的水吸收的热量是多少?[c水= 4.2×10 3 J/(kg·℃)] (2分) 
组成水稻的主要元素是 (  ) A.C、H、Ca、K、Mg、BB.N、P、S、
组成水稻的主要元素是 (  ) A.C、H、Ca、K、Mg、BB.N、P、S、Zn、Cu、Mn    C.C、H、O、P、S、ND.H、O、Fe、B、Zn、Mg
在横线处填写恰当的句子,构成前后连贯、合理的排比句。
在横线处填写恰当的句子,构成前后连贯、合理的排比句。人的一生像金,要刚正,人格须挺立;___ _ ,___ ___,______ ___;人的一生像水,要灵活,方法须随
.在一定温度下,可逆反应A(g)+3B(g)2C(g)达到平衡状态
.在一定温度下,可逆反应A(g)+3B(g)2C(g)达到平衡状态的标志是 ()。A.C生成的速率与C分解的速率相等B.A、B、C的浓度相等C.单位时间内,生成nmol
太阳黑子的变化周期大约是(    ) A.10年        B.11年
太阳黑子的变化周期大约是(    ) A.10年        B.11年       C.21年          D.111年
中国文化的发展当然要坚定不移地走自己的道路,同时必须
中国文化的发展当然要坚定不移地走自己的道路,同时必须对外开放,博采众长,这对促进我国文化艺术事业的发展,对丰富发展我们本民族的艺术品
设Sn是数列{an}的前n项和,an>0,且4Sn=an(an+2). (1)求数列{an}的通
设Sn是数列{an}的前n项和,an>0,且4Sn=an(an+2). (1)求数列{an}的通项公式; (2)设bn=,Tn=b1+b2+…+bn,求证:Tn<.
在党的十七大上,胡主席总书记指出:“教育是民族振兴的
在党的十七大上,胡主席总书记指出:“教育是民族振兴的基石,教育公平是社会公平的重要基础。”在当代中国,教育公平是人民群众最关心、最直