证明:(an+bn)-(an+1+bn+1)
=[(an+bn)(a+b)-2(an+1+bn+1)]
=(abn+anb-an+1-bn+1)
=[a(bn-an)+b(an-bn)]
=(bn-an)(a-b).
∵a、b为正实数,n∈N*,
∴a+b>0,a-b与an-bn同为正或同为负或同为零.
∴·(bn-an)(a-b)≤0,
即≤(an+1+bn+1).