设Sn是数列{an}的前n项和,an>0,且4Sn=an(an+2).
(1)求数列{an}的通项公式;
(2)设bn=
,Tn=b1+b2+…+bn,求证:Tn<
.
设Sn是数列{an}的前n项和,an>0,且4Sn=an(an+2).
(1)求数列{an}的通项公式;
(2)设bn=
,Tn=b1+b2+…+bn,求证:Tn<
.
(1)解4Sn=an(an+2),①
当n=1时,4a1=
+2a1,即a1=2.
当n≥2时,4Sn-1=an-1(an-1+2). ②
由①-②得4an=
+2an-2an-1,即2(an+an-1)=(an+an-1)·(an-an-1).
∵an>0,∴an-an-1=2,
∴an=2+2(n-1)=2n.
(2)证明∵bn=![]()
=
,
∴Tn=b1+b2+…+bn=![]()
1-
+…+![]()
1-![]()
<![]()