(Ⅰ)若f(x)的单调减区间为(,1),求f(x)的解析式;
(Ⅱ)当x>1时,求证:2>3-
.
(Ⅰ)若f(x)的单调减区间为(,1),求f(x)的解析式;
(Ⅱ)当x>1时,求证:2>3-
.
解:(Ⅰ)f′(x)=3kx2-18x+k+2<0的解集为(,1),
和1是3kx2-18x+k+12=0的两根,
∴ ,∴k=4.
∴f(x)=4x3-9x2+6x-1.
(Ⅱ)要证2>3-
,只要证4x3>(3x-1)2(x>1),
即证4x3-(3x-1)2=4x3-9x2+6x-1=f(x)>0,则当x>1时,
f′(x)=6(2x2-3x+1)=6(2x-1)(x-1)>0,
∴f(x)在(1,+∞)上递增,∴f(x)>f(1)=0,即
f(x)>0成立,原不等式得证.